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On Generalized Hexagons and a Near Octagon whose Lines
have Three Points

A. M. CoHeN AND J. TiTs

Proofs are given of the facts that any finite generalized hexagon of order (2, t) is isomorphic
to the classical generalized hexagon associated with the group G,(2) or to its dual if =2 and
that it is isomorphic to the classical generalized hexagon associated with the group *D,(2) if t=8.
Furthermore, it is shown that any near octagon of order (2, 4; 0, 3) is isomorphic to the known
one associated with the sporadic simple group HJ.

1. INTRODUCTION

In [7], one of us stated the uniqueness up to isomorphism and duality of the generalized
hexagon of order (2,2) (i.e. each line has three points and each point belongs to three
lines). The proof remained unpublished but was recently communicated to the other
author who observed that the same general idea, suitably adapted, also yields the
uniqueness of the generalized hexagon of order (2,8) and that of the near octagon of
order (2,4;0,3) (see definitions below). This paper presents those three results.

It should be mentioned that, meanwhile, F. Timmesfeld ([6, (3.4)]) has outlined a
characterization by group-theoretical means of the generalized hexagon of order (2, 8)
and of the dual of the classical hexagon of order (2, 2).

By aresult of W. Haemers and C. Roos[3], the only possible orders of a finite generalized
hexagon with lines of length three are (2, 1), (2,2) and (2, 8). It is easy to see that there
is a unique generalized hexagon of order (2, 1) and that it admits GL(3, 2) as a group of
automorphisms. We shall not discuss this case any further.

2. DEFINITIONS AND STATEMENT OF RESULTS

Graphs are undirected, without loops or multiple edges. Subsets of the point set of a
graph are often identified with their induced subgraphs. For y a point of the graph I’
and a nonnegative integer i, the set of points in I" at distance i from vy is denoted by
I';(y). An i-path is a path of length i

An incidence system (P, %) is a set of points P and a collection £ of subsets of P
whose elements are called lines. To such a system we associate the collinearity graph I’
whose vertices are the points and in which adjacency for two distinct vertices is collinearity.

The following notion appears in [5]. A regular near 2d-gon of order (s, t;ts,. .., ta_y)
and of diameter d is an incidence system (%, £) such that each line contains exactly s+ 1
points, each point is on exactly ¢+ 1 lines, the following holds with ¢, =0 and t; =1: for
any two points a, B € P with « € I;(8) there are precisely 1+t lines through a bearing
a single point of I';_,(8) while the other ¢ —t; lines through & have no points in I';_,(8)
or I';(B) but a (here, 0si=d), and the collinearity graph I" is connected (of diameter
d automatically). A generalized 2d-gon of order (s, t) is a regular near 2d-gon of order
(s,2;0,0,...,0) and of diameter d.

The dual of a generalized 2d-gon (P, ¥) is the incidence system (%, ?') where ?' is
the collection of subsets of & consisting of all members of £ that have a point of 2 in
common. It is easily verified that the dual of a generalized 2d-gon of order (s, t) is a
generalized 2d-gon of order (¢, s).
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THEOREM 1. Up to isomorphism there are exactly two generalized hexagons of order
(2,2). Each of them is the dual of the other.

THEOREM 2.  Up to isomorphism there is exactly one generalized hexagon of order (2, 8).
THEOREM 3. Up to isomorphism there is exactly one near octagon of order (2, 4;0, 3).

The generalized hexagons of Theorem 1 are associated with the group G,(2), and the
one of Theorem 2 is associated with *D,4(2); see [7] for a description. The near octagon
is described in [2]; it is associated with the sporadic group HJ of Hall-Janko.

The collinearity graph I' of a regular near 2d-gon of order and diameter as above is
a distance-regular graph with intersection array {s(t+1),s(t—1,),...,s(t~t4_,); 1,1+ 1,
..., 14+1,_,,1+1} according to the definition in [1]. This means that for any i (0<i<d)
and any two points «, B€l" at mutual distance i, there are exactly 1+t points in
I'_(a) nI(B) and exactly s(¢ —¢;) points in [, () n I'/(B) (here, t,= —1 and, as above,
t,=0).

We shall restrict attention to the case of regular near 2d-gons with lines of size 3 (i.e.
s=2). It is easy to see that the above incidence system is completely determined by its
collinearity graph if t,=0. Therefore, if we denote by (i) the number of isomorphism
classes of distance-regular graphs with intersection array i, the above theorems (without
the duality statement, that is) can alternately be expressed by the following equalities:

k(6,4,4;1,1,3)=2, k(18,16,1651,1,9)=1, x(10,8,8,2;1,1,4,5)=1.

In a distance-regular graph I" whose maximal cliques have size 3, lines are by definition
maximal cliques. Note that this definition coincides with the one given above for any
near 2d-gon whose collinearity graph is I

Suppose I is the collinearity graph of a near 2d-gon of order (2, t;0, t3, . .., t4_;) with
t;>0 (remember that if d =3, t; =t by definition). If y, § are two collinear points of I,
we shall denote by 8 the line through vy, 8 and by vy * 8 the third point of yé. If v, § are
points at mutual distance 3, then there are distinct v, € I'\(y) " I',(8)and 6, € I, (8) n ' (v;)
(i=1,2, BT ). Qenote by vé the intersection of I'i(y;*8)overalli (1sist;+1).
Clearly |y8|<1. If |[y8] =1 for each pair y, 8 with ye I';(8), we say that I satisfies the
regulus condition. This notion is taken from [4].

3. RECONSTRUCTION OF I' FROM THE GEOMETRY OF LINES HAVING
NO PoiNT COLLINEAR WITH A GIVEN POINT

In this section, (P, £) is a (nonnecessarily finite) incidence system with collinearity
graph I'. For w € ? and ne N, we denote by I'..,(w) [resp. I'<,(w)] the union of all I(w)
over i=n (resp. i<n), and by Y.,(®?, Z; w), or simply Y.,(@) [resp. Y<.(®)], the
incidence system consisting of that set and the lines (elements of £) entirely contained
in it. Our purpose is to show that, under certain conditions which are satisfied in the
cases we are interested in, the system (%, £) can be recovered from the subsystem Y. (w).
The conditions in question are the following:

(HO) Every point belongs to at least three lines and every line has at least three points.
(H1) There is no n-gon (i.e. system of n distinct points p; and n distinct lines L;, with
i€Z/nZ, such that L;~ L, ={p;} for all i) for n <6, but any two points at distance 2
are vertices of a hexagon.

(H2) If a € P, every line having at least two points in I';(a) meets I',(a) [and hence is
contained in I'<;(a)].

It is clear that the conditions are satisfied by thick generalized hexagons and by regular
near 2d-gons of order (s, t; 0, t5,..., t;_;) and diameter d if t;#0, s=2 and t=2.

a
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LemMmMA 1. Leti=1 or 2. If the conditions (HO), (H1), (H2) are satisfied, and if v € P,
then the incidence system (P, £) is uniquely determined by the subsystem Y.,(w). More
precisely, if (P', £') is another incidence system satisfying the conditions (HO0), (H1), (H2)
and if w'€ P', then every isomorphism Y~ (P, £; w) > Yo (P, £'; w') extends uniquely to
an isomorphism (P, £) > (P', &"), and the latter maps o onto w'.

Proor. Let D (resp. D) denote the distance in the graph of Y..;(w) [resp. Y ;(w)]; we first

show that the following properties are equivalent:

(P1) a,bel(w) and D'(a, b)=2;

(P2) a,bel-(w), D(a, b)=4 and there is a line L of Y.,(w) containing a and such
that xe L —{a} implies D(b, x) =3.

Suppose that (P1) holds and consider a hexagon having a and b as vertices [cf. (H1)].
Let L, L' be the sides of that hexagon which are contained in Y.;,(w) and contain
respectively a and b. By (H1) and (H2), every point of L—{a} is at distance 2 of L',
hence at distance 3 of b, inside Y.,(w), and (P2) follows. Conversely, if (P2) holds, it
follows from (HO) and (H2) that the distance of a and b in I’ is 2, which, in view of the
relation D(a, b) =4, is only possible if (P1) holds.

Now, we see that the set I';(w) precisely consists of those elements a of I'.;(w) for
which there exists b such that (P2) holds. Let then R denote the equivalence relation in
I'(w) generated by all pairs (a, b) satisfying (P2). From the equivalence of (P1) and (P2),
it follows that the map p— C, =TI"j(p) " I'(w), with pe I';_|(»), is a bijection of I';_,(w)
onto the set of equivalence classes of R, and that two points a, b of I';(w) are on the
same line containing p if and only if a, be C, and (q, b) does not satisfy (P2). Thus, we
have reconstructed Y., (w). If i=1, we are through. If i =2, we use induction.

4. AuxiLIARY REsuLTts oN CoveERS OF GRAPHS

Given two graphs I, 4, we call a map f:I - A sending points to points and edges to
edges a cover of 4 whenever its restriction to I'|(y) is a bijection between the points of
I'\(y) and the points of 4,(f(vy)) for each point y of I. Note that the cardinality of
f () only depends on the connected component of y. We call f an m-cover of 4 if
[f"'(y)|=m for each point y of I Two covers f,:I',> A, and f,: I~ A4, are called
isomorphic if there are graph isomorphisms ¢ : I, > I, and ¢ : A, > A, such that f,¢ = ¢f,.
Uniqueness of covers is always meant up to isomorphism. We shall often refer to I as
a cover of A when in fact we have a map f:I' > A in mind.

‘The’ fundamental group of a connected graph is the group of ‘homotopy classes’ of
closed paths with a given origin, two such paths being ‘homotopic’ if each one of them
can be deduced from the other by successive insertions or deletions of an oriented edge
followed by its inverse. Each homotopy class contains a unique reduced path (path of
minimum length in the class). In the sequel, we shall often use the word ‘path’ instead
of ‘reduced path’. The fundamental group made abelian is canonically isomorphic with
the first homology group H, of the graph, i.e. the group of 1-cycles (linear combinations
of oriented edges with zero boundary).

Denote by H(n,2) the n-cube over F,, i.e. the graph whose points are the vectors in

> and where two points are adjacent if they differ in exactly one coordinate. A closed
path of length 6 in H(n, 2) is called an aperiodic hexagon if it circumscribes two adjacent
squares.

LEMMA 2. Let n be an integer =2. .
(a) The graph H(n,2) has a unique 2-cover H(n,2) without 4-circuits. That cover is
connected.
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(b) The fundamental group 7 (H(n,2)) of H(n,2) is generated by closed paths of H(n, 2)

‘the form ghg ' with h an aperiodic hexagon. . . .
?{i Th: gragphgﬁ (n,2) is bipartite. The involution T which exchanges the pairs of points

having the same images in H(n, 2) is an isomorphism. If € H(n,2), .the points vy and 'r}./
are the only points at distance two from all the points which are at distance two from 7y;
thus, T is central in the full automorphism group of H(n,2). _

(d) If y, 8 H(n,2) are such that their images are opposzrte vertices of H(n,2), the group
of all automorphisms of H(n,2) fixing y (and hence Ty) is a symmetric group on n letters
whose even (resp. odd) elements fix (resp. exchange) & and 8.

Proor. (a) Let F be the group (ri, 2, .., r,| r2=1). Choose an origin o in H(n, 2).
Then the paths on H(n,2) with origin o are naturally labelled by the elements of F. The
group == m,(H(n,2)) of closed paths is the derived group F’ of F (just observe that
the elementary abelian group F/ F' of order 2" is naturally bijected onto the set of vertices
of H(n,2)). The first homology group H(H(n, 2))= F'/F" is obviously generated by
4-circuits. Since the sum of an odd number of 4-circuits in H,(H(n, 2)) cannot be zero,
this homology group has a unique subgroup of index 2 containing no 4-circuits. But the
subgroups of index 2 of 7 correspond bijectively to those of H,(H(n,?2)) for any such
subgroup of F' contains the commutator subgroup F". Thus 7 has a unique subgroup
of index 2 without 4-circuits. This, however, amounts to saying that H(n, 2) has a unique
connected 2-cover H( n,2) without 4-circuits. As any nonconnected 2-cover consists of
two distinct copies of H(n,2) and therefore contains 4-circuits, (a) is proved.

{b) The fundamental group  is the kernel of the natural homomorphism of F onto
F,, where

Fi=(r, rs ..., ra|ri=1, rr = rjr; for all distinct i, j),
and 7= 7,(H(n, 2)) is the kernel of the natural homomorphism of F onto F,, where
Fo={(r,r,...,re| rP=¢l re=er, rir; = rire for all distinct i, j).

Since
(ry Ty, el Fi=1, rirn = rr; for all distinct 4, j, k)

is clearl-y another presentation of F, on the ‘same generators’ r,, r,,..., r, as F,, the
group 7 is generated by all elements of the form ghg™' for g in F and h of the form
R with i, j, k distinct. This means that h is an aperiodic hexagon, whence (b).

(¢) This easily follows from the above.

{d) Taking Yy as an origin in H(n, 2), the latter can be described as the graph with
vertex set F/?r whose edges are all pairs {x7, y7} with x¢e r,-j:ﬁ for some i (1<i<n).
Any permutation of n letters acting on F by permuting the generators is an automorphism
preserving 7 and induces an automorphism of H (n, 2) fixing ’y It is clear that all such
automor?bxsms preserve the pair {3, 73} and that the automorphism corresponding to a
transposx{xon cannot fix 8 (because H(n,2) has no 4-cycle).

Now, since the group of all automorphisms of H (n,2) fixing a given point is the full

symmetric group and any automorphism of H(n, 2) ind 1
S e Ay (n,2) induces an automorphism of H(n, 2)

DSILEprpose f i)s the collinea}-ity gr‘aph of a rectangular near 2d-gon of order
=1ihy. .. 1lg) and fix a point @ in I’ Let the 1+¢ lines through @ be labelled

1,2,...,l+tandthetwopointsinF( ine j

' L+re 1(®) of line j be labelled j, and j,. Thus each poi

. - . i t
in I'j(w) is uniquely determined by its label. Points of I'(w) wi(l)l be i{i]entiﬁed withr’)thzilr

labels.
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We shall also attach labels to points in I;(w). Let v be such a point. Label y by the
vector in F}** whose jth coordinate (1<j=1+1) is 0, 1 according as j, or j, is the nearest
point on line j through w. Two points of T;(w) may have the same label. Nevertheless,
this labelling is useful as is indicated by the lemma below.

Denote by H(n, 2) for n odd the graph on the 2" vectors in F3 of even weight (the
weight of a vector being the number of nonzero coordinates) in which two points are
adjacent whenever their vector sum has weight n— 1.

LeEmMmA 3. Suppose I is the collinearity graph of a generalized 2d-gon of order (2,2%)
and w is a point of I. Then the labelling makes each connected component Y of I'y(w) into
an my~covering of a graph isomorphic with H°(2°+1, 2), for some integer my. The sum
Y. my, extended over all connected camponents, is equal to 2(°¢~2+472%,

Proor. 1If two points of I';(w) are adjacent in that graph, their labellings differ by
precisely 2% coordinates; furthermore, the places in which the labels of two distinct
neighbours of a given point vy coincide with the label of y are not the same. These facts
are consequences of the axioms of generalized 2d-gons.

In order to prove the first assertion for a given component Y of I';(w), we may assume,
without loss of generality, that Y has a point labelled 00,...,0 and then the above
observations and the fact that Y and H°(2°+1, 2) have the same valency 2+ 1 readily
imply that the labelling of Y is a covering of H%(2°+ 1, 2). The second assertion follows
from a straightforward enumeration.

5. PRoOOF oF THEOREM 1

Here, I' is the collinearity graph of a generalized hexagon of order (2, 2). Fix a point
o of I'. The idea is to show first that I';(w) is one of two possible graphs and then that
I';(w) determines I' uniquely.

The points of I'|(w) and I';(w) are labelled as in Section 4, and we also label the edges
of I's(w) as follows: such an edge {v, 8} is labelled i; whenever y * 8 € I'|(i;), where
e I'(w). In this case, we say that {v, 8} is of type i. Thus the type of an edge in I';(w)
is the line through w to which the edge is nearest.

The proof consists of 12 steps and a proposition.

Step 1. If {a, B} and {v, 8} are distinct edges in I';(w) with the same label, then a, y
have mutual distance =2 inside I's(w).

Clearly, the two edges are not adjacent. Moreover, y € I';(a) would imply the existence
of the pentagon ay(y * §)i;(a * B)a where i; is the common label of {a, B} and {v, §}.

Step 2. If in the path aBySe of I's(w) without repetition, the edges {a, B} and {3, e}
are of the same type, they have the same label.

Let j, be the label of {a, B} and let { € I',(y) N I's(w) be distinct from 8, 6. Then {v, ¢}
has label j, by step 1, so {8, £} has label j,, again by step 1.

Step 3. Set {i, k, I}={1,2,3}. In I';(w), a path afy8e without repetition whose edges
have types i, k, I, i respectively, extends to a single hexagon inside I's(w) whose edge types
are either i, k, I, i, k, lori k, I i, 1 k.
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In I there is a point 1 € @ at distance 2 from &. Let' tel be spgh that {¢}= I"; (&) r~i
I(n). Clearly m # B. If we had n # a, then nle(8 * €)im, where i is the common labe
of {a, B} and {8, } (see step 2), would be a pentagon. Thus 7 =a. Suppgse Le Fz(w)f:
Then {a, a * {} and {g, £ * {} are edges of I',(0) with the same label. Without loss o
generality we may take this label to be ko. By step 2, the label of {B, v} must then be I.co,
but by (1) it must be k,. This is a contradiction, whence { e I';(w). Step (3) now readily

follows.

Step 4. In I's(w) each hexagon has two edges of each type 1, 2, 3.

By step 1, no type could occur three times.

A hexagon in I's(w) is said to be periodic (with respect to w) if its edges have types i,
j, k, i, j, k and aperiodic (with respect to w) otherwise, i.e., if its edges have types i, J, k,

ik Jj.

STEP 5. A path a,asa; in T's(w) of length 2 contained in a periodic hexagon is not
contained in a second hexagon.

Let a,a,a;0,05060; be the periodic hexagon, with edges of types 1, 2, 3, 1, 2, 3 say.
Without loss of generality, we may assume a second hexagon containing a,a,a; to be
either a,@,a3a,8,8,a, or a,a,038,8,8:a; with B;# a; Application of step 4 yields a
contradiction in the first case and determines the edge types of the second hexagon in
the latter case, showing that there are two incident edges both of type 3, a contradiction.

SteEP 6. Let 12 be a connected component of I';(w) containing a periodic hexagon. Then
every edge of ( is in exactly two hexagons and every hexagon in (2 is periodic.

Let o 030405060, be a hexagon in 2 with edge types i, j, k, i, j, k. From «, there
starts a path a,8,8,8; without repetitions and of edge types k, j, i. Apply step 3 to obtain
a hexagon a,a,8,8,B8;842,. Note that as # B, in view of step 5 and that this hexagon is
periodic. Now any hexagon distinct from o, a,a;0,a5a¢a, but containing «,, a, must
contain fa,a,8,, so coincides with the second hexagon, by step 5.

So far, we have shown that any edge contained in a periodic hexagon in {2 belongs to
exactly one other hexagon, which is periodic. As {2 is connected, step 6 readily follows.

Step 7. If {2 is a connected component of I's(w) containing a periodic hexagon, then
any path in Q with edge types i, j, i, j, i, j, i, j (i,] distinct) is an octagon. Moreover, the
ﬁrs} zznd) last edges of any path of type k, i, j, i, Js k (i, j, k distinct) span distinct lines meeting
nl,w).

Set {i,j, k}=1{1, 2,3} and let y,y, Y273Y47YsYe be a path in 2 with edge types k, i, j, i, j,
k. Then, clearly, all y, (0<i<6) are distinct. We show that y, * v, = ys * .. For, letting
B_E I'i(v3) n I'5(@) be such that {B, s} has type k, we get B * yy€ Iy( 1y, * Y1) O Ly(ys * ys).
Since {¥s, e}, {10, 71}, {B, ¥s} have the same label, say k,, the points y, * y, and ys * Y
must be on the same line through ko. So if v, * y, # Vs * Ve, then yays(ys * ¥6)(vo * v1)
and vy,y;y,7y, are 3-paths from v, to points of vy,y,. Therefore, there exists a unique
a € I'(y4) " I'(v,), and vy, contains an edge of type k. But @ is not in I'y(w), for otherwise
AYsY3Y2 Y1 Yoo vxfould be an aperiodic hexagonin (2, contradicting step 6. He;lce aely(w).
Now ay, contains an edge of I (@) of type k, so « belongs to the line y,y, leading to
a pentagon ay,y,¥;y,a, a contradiction. This proves that Yo* v, and s * v, coincide
and settles the last statement of step 7. Now if Y0Y102838,8586 is a path in 2 with edgé
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types k, j, i, j, i, k, the statement already proven shows that s * ys= 85 * 8¢, hence that
¥sYes and 8586 coincide. One cannot have ys = §,, otherwise steps 6 and 3, applied to the
path v3¥,ys658s, would imply that {8, ys} is an edge of I's(w), yielding a pentagon
yly2735362y| Thus ¥s=28sand § 645382y,y27374y5 is a closed path of 2 with edge types

If I'3(w) contains a periodic hexagon, then w will be called a periodic point of T,
otherwise w will be called an aperiodic point.

Step 8. Let w be a periodic point of I'. If I'' is a generalized hexagon of order (2,2)
containing a periodic point w’, there is an isomorphism I' > I"' mapping o to w’. Moreover,
the group of automorphisms of I fixing w is transitive on every set I'(w) (0<i<3), and
I';(w) is connected.

Let £2 be a connected component of I';(w) containing a periodic hexagon. As in the
proof of Lemma 2, but now with n=3, let F be the group with generators r,, r,, r; and
relations ri=r3=r}=1, and identify the paths on € with origin a fixed point o with the
elements of F. In view of steps 3 and 6 any path of the form grirnrirrng ~! with i, j, k
distinct and g € F, is an element of (), the fundamental group of 2 with respect to
0. Let 7 be the subgroup of ,(£2) generated by all these elements and let £ be the cover
of £2 whose fundamental group is 7 Then the graph @ can be described as the collection
of points of a hexagonic lattice in the Euclidean plane whose edges are the pairs of points
at minimal distance (cf. Figure 2, but disregard labels). The three edge types correspond
to thethree ‘parallel classes’ of edges. Let (4, j, k) beacyclic permutation of (1, 2, 3). The map
sending y € {2 to the end point of the 2-path starting at y with edge types i, j if v has
even distance to o and with edge types j, i otherwise is a type preserving automorphism
of ; call it U, It corresponds to a translation of the plane; in fact, these maps v,
(k=1,2,3) generate the full group T of translations stabilizing Q. Together with the
automorphisms of @ induced by central symmetries with respect to the center of either
a hexagon or an edge, these translations form the full group G of type preservmg
automorphisms of (2. It is regular on the vertices. Now (2 is the quotient of 0 by a
subgroup, G say, of G. But G cannot contain a central symmetry, for otherwise 2 would
contain either a triangle or a loop. Thus G < T. Due to step 7, the elements 4y, (i=1, 2, 3)
belong to G and the translations 2v, cannot belong to G. Hence [T: G] divides 16 and
G contains no subgroup strictly larger than the one generated by 4v,, 4v,, 4v;. It follows
that G coincides with the latter and that the number of vertices of {2 is [G:G]=2[T:G]=
32. In particular, 2 =I;(w) and the group G/G acts on {2 as a regular group of type
preserving automorphisms.

By the second statement of step 7, the incidence system Y = Y.,(w) as defined in
Section 3 can be uniquely reconstructed from (2. The first part of step 8 is therefore a
direct consequence of Lemma 1. The second statement follows by taking the automorph-
isms of 2 (not necessarily type preserving) induced from those of a, extending them to
automorphisms of Y and applying Lemma 1 once more.

Ster 9. If w is aperiodic, I';(w) is the-union of two connected components each of which
is isomorphic to H(3,2) (cf. Lemma 2).

Due to steps 6 and 8, every hexagon in I';(w) is aperiodic. Let {2 be a connected
component of I's(w), and fix a point o in (2. Define F as in the proof of Lemma 2 and
identify the paths originating in o again by the elements of F. In view of step 3 and the
aperiodicity of all hexagons in (2, any path of the form grjrkr,-rjr,-rkg"1 with i, j, k distinct
and g € F is an element of 7,(2) (identified with a subgroup of F). According to Lemma
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2(b) this implies that 111(171(3, 2)) is contained in m(£2). It is easily seen that the sixteen

elements
p(as b’ ¢, d) = r‘llrgrii(rlrzrer)ds a, b3 [+ d € {07 1},

form a set of coset representatives of m(H(@3,2)in-F1Ifd=0orif b= c= 0, p(a, b, ¢, d)
represents a path of length strictly smaller than 6. If d=c=1 (resp. if d=b=1 and
¢=0), the coset of p(a, b, ¢, d) also contains

a+1
rert e, (resp. ri’ nr),

which again represents a path of length <6. Consequently, none ofthe p(a, b, ¢, d), except
p(0,0,0,0), can belong to m,({2), and we have m(Q2)=m(H(3,2)), hence step 9.

Let I';(w) be as in step 9. For ye I's(w), there is a unique point at distance 4 to vy
within I';(w) with the same label as y. Denote this point by .

STEP10. Let w be aperiodic andlet y € I's(w). If 6 € I'3(w) N I'\(vy), theny * & is collinear
with y° % 8° and o can be extended to an involutory automorphism of I fixing I'(w) L Iy (w)
pointwise.

Any 8 € I'(w) nT'y(y) has distance 3 to y” inside I's(w) and is therefore in I'3(y?).
However, among the three paths of length 3 joining 8 and y?, only two are inside I';(w);
therefore, the third one must be 8(y * §)(y” * 67)y°. This proves the first statement.
Extending o to an automorphism of Y.,(w), defined as in Section 3, by letting «°, for
a € I's(w), be the unique point in I(w) " I'/(a), and applying Lemma [, we obtain the
second statement. R

Step 11. Let w be an aperiodic point. If five points of a hexagon in I' belong to I';(w),
then so does the sixth.

Let yy,8,8 be a 3-path inside I';(w). It has edge types either i,j, i or i, j, k with i, j, k
distinct. In the latter case, applying step 3 to the path yvy,6,8 (resp. 88,v,y) extended
by an edge of type i (resp. k) provides a 3-path from vy to & with edge types j, k, i (resp.
k, i, j); thus, in that case, all three 3-paths joining v and & are contained in I';(w). In the
former case, application of step 3 to the path with edge types j, i, k, j originating from v,
leads to a second 3-path from y to & with edge types k, j, k. Now, the third 3-path from
¥ to & must pass through points on the lines spanned by the edges of type j with extremities
v, 8 respectively and hence has no other points but y and & in I';(w). The conclusion is
that a hexagon containing y and 8 has either 4 or 6 points in I';(w). This establishes step 11.

SteP 12.  If w is aperiodic, then every line through w is a periodic point of the dual I'*
of I

Let £2 be a connected component of I';(w) and let * denote the line labelled 1 through
. Let v, 8 be adjacent points of I'(w) such that {y, 8} has type 3. Then by step 10 there
isaline e of I’ on y* & and y° * §°. Since e has a point on the line 3 through w, we
have ee I'f(w*). Now 8, y° have distance 3 realized by two distinct paths of 2, say
8a, 817" and 8a,B,y’, respectively. Note that da,B,v°B,a,8 is a hexagon in . Since
the type of {v, 8} is 3, we may assume that the type of {8, a;} is i for i=1,2. Since the
hexagon is not periodic by the hypothesis, it follows from step 4 and the fact that {y°, 57}
has type 3, that {7, 8;} has type i for i=1, 2, and that {a, B,} has type 3. This means
that the lines 8a, @,B,, B,¥” of I' are points of I'f(w*). In particular, the closed line-path
&, ¥, 8z, a5, By’ ¥78°, e constitutes a hexagon of I'* having exactly five points in
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I'f(w*), namely all but e. Thanks to step 11 it follows that I'¥(w*) contains a periodic
hexagon.

PROPOSITION. In a generalized hexagon of order (2,2) either all points are periodic or
all points are aperiodic. Each instance corresponds to a single isomorphism class, and these
classes are the duals of each other.

Proor. Suppose I' contains two periodic points w and »'. Let i be the distance from
w to w'. Since by step 8 the group of automorphisms fixing w is transitive on I';(w), the
graph I' contains a periodic point adjacent to «’. But then by the same argument, all
neighbours of ' are periodic. By induction with respect to the length of a path from '
and in view of the connectedness of I, it follows that all points of I" are periodic.
Consequently, if I" contains a periodic point y as well as aperiodic points, then all points
except for y are aperiodic. On the other hand, if o is the involutory automorphism of
step 10 defined with respect to a point of I';(y), then y7 is a periodic point distinct from
v, which is absurd. Hence the first assertion.

In view of steps 8 and 12 there are at most two isomorphism classes of generalized
hexagons of order (2,2). Since the classical generalized hexagon of this order is not
isomorphic to its dual (cf. e.g. [8, 5.9]), there are exactly two isomorphism classes (one
could of course also derive this fact by verifying that any line through a periodic point
is an aperiodic point of the dual). These two classes are each other’s duals, due to step 12.
The proposition is proved.

Theorem 1 is a direct consequence of the proposition.

Remarks. Let I, w be as before and suppose  is aperiodic. The automorphism o
of step 10 is used by Timmesfeld in [6]. It clearly is central in the group of automorphisms
fixing w. Since the full automorphism group is transitive (consider the subgroup generated
by all o for w running through the points of I to establish this), and I" has odd cardinality
(namely 63), it follows that o is contained in the centre of a Sylow 2-subgroup of the
full automorphism group. This fact may be used to identify I" as the dual of the classical
generalized hexagon. Thus, the classical generalized hexagon is the one with periodic
points. With the data provided by the steps of the proof it is not hard to explicitly describe
the two generalized hexagons. We have done so in Figures 1 and 2.

From step 10 it follows that if w is an aperiodic point and if y € I';(w), then y ={vy”}.
This implies that the regulus condition holds for the dual of the classical hexagon. But
it is easily shown that, for hexagons of order (2, 2), the regulus condition is self-dual;
therefore it also holds for the classical one.

6. PRoOF OF THEOREM 2

Here, I" is the collinearity graph of a generalized hexagon of order (2, 8). Fix we I’
and label the points of I'|(w) and I';(w) as above. By [4], any generalized hexagon of
order (2, 8) in which the regulus condition holds, is the *D,(2)-hexagon. We shall therefore
content ourselves with the following proof of the regulus condition, in two steps.

STep 1. The graph I's(w) is connected. Its labelling is a 2-cover of H%(9,2). For any
v € I';(w), the unique point y° of I's(w) which is distinct from v and has the same label
belongs to I's(y). Moreover, if € I'/(y) n I';(w), then §€ I's(v7).

By Lemma 3, there is a map £ —¢ of I's(w) onto H°(9, 2) which is a 2-cover and which,
restricted to any connected component of I';(w), is isomorphic to the labelling. Let v, 6
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FIGURE 1. The dual of the classical generalized hexagon of order (2, 2). Line segments represent lines of the
generalized hexagon. The three vertices labelled iy, in the picture are to be identified in order to represent a
point in I';(w)~ I'y(i)). Each occurrence of the vertex iy, provides a line through the point i,

be two adjacent points of I';(w); their images ¥, & are adjacent. Take a 3-path in H°(9, 2)
from & to ¥ and lift it to a 3-path in I'y(w) originating in 8. The end point of that 3-path
has the same label as y and is the end point of a 4-path starting at y. Therefore, it must
be distinct from vy, whence the first, second and fourth assertions of step 1.

Since y and y” are not adjacent in I';(w), their mutual distance is =2. Suppose there
exists § € I'i(y) n I'1(y?). Then necessarily 8 € I',(w), so that y* § € I';(w). The latter
point, being a neighbour of v, has distance 3 to y° in I's(w). Thus y°8(8 * y) can be

completed to a pentagon, which is absurd. It follows that y° & I',(y), so that y” € I's(y),
whence the first statement.

SteP 2. The graph I satisfies the regulus condition.

Let {y, 6} be an edge of I's(w). Then {y, §°} is also an edge. The common label of vy
and y? coincides in a single place, say the ith, with the label of § and §°. If j is the
common value of those labels in that place, we have I';(y” * §7) I''(0) ={i;}. By step 1
the points y * 5 and y” * 8 are distinct. Suppose they are nonadjacent. Then 87 (y“ * §7)
i;(y * 8) is a 3-path, so that 8 e I;(y * §). As 6° ¢ I5(y) by step 1, we get 7 € I,(8), in
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FIGURE 2. The classical generalized hexagon of order (2, 2). Conventions are as in Figure 1, with the exception
that the constituent I'y(w)u I'j(w) U I(w) is not included as it is identical to the one in Figure 1.

contradiction with step 1. The conclusion is that y * § and v * 6 must be adjacent and
that i;=(y * &) * (y” * 8”). Letting & range over I';(y) " I';s(w), we obtain y € &y and
we are done.

RemaRrk. Instead of ending the proof by referring to [4], we could also observe that
o can be extended to an involutory automorphism of I" and apply Timmesfeld’s Theorem
[6; (3,3)] to the group generated by the 819 involutions o obtained by varying o over
the points of I.

7. PROOF OF THEOREM 3

Here, I' is the collinearity graph of a regular near 8-gon of order (2,4;0,3). Fix we T’
and label I'|(w), I's(w) as above. We proceed in 8 steps.

Step 1. The graph I',(w) is isomorphic to H(5,2) (cf. Lemma 2).

The labels of two adjacent points v, 8 of I'4(w) differ in exactly one place; they coincide
in four places as y * 8 has distance 2 to 1 + t; =4 points on four distinct lines through o,
and the coordinates corresponding to the fifth line through @ must differ, for otherwise
this line through » would bear a point at distance 3 from v, § and this point would be
a fifth point of I'(w) n I'5(y * §), in contradiction with t;=3. Thus the labelling is a
2-cover of H(5, 2). Thanks to Lemma 2, we are done.

Step 2. Put Q;={yel3(0)|[(y)n{0, 1} =D} for 1<i<5. Then I is the disjoint
union of the ; and each 2, is isomorphic to H(4,2) (cf. Lemma 2).
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The points of (2; are labelled by vectors in F; whose coordinates are indexed by the
numbers j (1<j<5;j#i) in such a way that the jth coordinate of the label of ye {2, is
0, 1 according as 0; € I'(y) or 1;€ I's(y). Thus, the label of a point in {2; is obtained by
deletion of the ith coordinate from the label of either one of its two neighbours in Iy (w).
The defining properties of regular near octagons readily imply that any edge {7, 8} with
ve ; and 8 € I';(w) must belong to £2; and that the labels of y and & differ in all but
one coordinate. But for any even n, the graph on F; whose edges are the pairs of points
all of whose coordinates but one are different is isomorphic with the n-cube H(n,2).
Thus, £2; is a cover of H (4, 2) without 4-circuits. In particular, it has at least 32 points. But
I,(w) has 160 points in all, so each £2; is a 2-cover of H(4, 2), hence the assertion.

Let o (depending on ) be the permutation of the set of vertices of I' defined as
follows: if ye Iy(w)u I{w), then y" =y;if ye I',(w), then ¥ = y * §, where w8y is the
unique 2-path joining » and y; finally, if yeI'i(w) with i=3 or 4, y° is the unique
second point of the ¢onnected component of y in I;(w) whose label coincides with the
label of .

Step 3. For any yeli(w), we have ~y°el3(y)uly(y). Moreover, if
sel(w)nTy(y), then e I5(y7).

Step4. The graph I satisfies the regulus condition. Moreover, the map o is an involutory
automorphism of T

Proofs of step 3 and the first part of step 4 are omitted as they run parallel to those of
step 1 (last two statements) and step 2 for Theorem 2.

As for the involution o, we first check that it carries lines in I'5(w)u I';(w) to lines.
Suppose L is a line contained in I'»(w) w I'3(w). Then there are a € ['3(w) and B e I,(w)
such that L={a, B, @ * B} with a * B e I's(w). Without harming generality, we assume
that @ is in {25 and has label 0000 and that o * 8 has label 0111 in ;. In view of the
regulus condition, there is a unique point a’'€ wa (see Section 2). This point must be in
I';(w), distinct from o, and at distance 2 to each point of I';(w) " I'>(a). Therefore, o’
is contained in {25 and has the same label in {25 as a. Thus, @’ = a. Moreover, if e € I'/(w)
is such that we is a 2-path, the points ¢ * 8 and a“ are adjacent. But £ * 8 = 8( e [y(w))
by definition, so {a”, 87} is an edge. Since a” * 87 is an element of I',(e * B) "I (a?),
it must be an element of Qs distinct from « * 8 with label 0111 in 5. Consequently,
a’ * B7=(a*B)” and L’ is the line {a“, B, a” * B7}.

If {v, 8} is an edge with yeI';(w) and € I'y(w), then there is a unique line on y*
containing a point of I',(w) with the same label as 8. This point cannot be 8, for otherwise
v and y° would be two neighbours of § in the same connected component of I';(w).
Therefore, 67 must be adjacent to y°. Since o clearly is an automorphism on ['J(w), we
conclude that ¢ is an automorphism of I. This settles step 4.

Step 5. Let ye I'y(w) have label 00000. Then, the two points of I';(w) labelled 11111
are at distance 4 from . One of them, call it 8, satisfies the relation I'i(y) N I';(8)  I's(w),

whereas the other, §°, satisfies I'\((y) N I'5(87) < I'y(w). If yy,7v27v58 is any path of length 4
Joining y and 8, one has vy,, y,€ I';(w) and y;€ I'y(w).

Let § provisorily denote any one of the two points of I's(w) labelled 11111 (the other
being 87). We shall repeatedly make use of the fact that

(#*) the labels of two points of I'y(w) adjacent with a same point of
I';(w) differ in at most one place.
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In particular, 8,87 € I3(y)UT,(y). Let yy,7,¥:6 be a path, with possibly 7y, = y,. If
Y1, ¥3€ I'3(w), (*) implies that y,€ I')(w) U I'3(w). But y,, ; are labelled 0000 and 1111,
respectively, so their mutual distance in I';(w) exceeds 2 and we must have v, € I(w),
in contradiction with the fact that the labels of v, and y; have no coordinate in common.
Thus either y, or vy, belongs to I'y(w). We assume y; & I';(w), the reasoning for the other
case being similar. Since the labels of y and 8 differ in all 5 coordinates, (*) implies that
Y1, Y2€ I'3(w) and 1y, # vy,, hence 8 € I',(w). We have vy, € I';(8); therefore, there are four
minimal paths from v, to & and, by (*), each one of them starts with an edge in I';(w)
followed by a point of I'y(w) N I',(8). From any such point there start four paths of length
3 to vy each of which consists of its origin [in I'y(w)n I';(8)], two vertices belonging to
I's(w) and, finally, y [again by (*)]. As any point of I';(y) ~ I';5(8) must belong to such
a path, we have I'|(y) N I'3(8) © I's(w), which is the first inclusion of step 5. The above
discussion also establishes the last assertion and shows that any path yy, v,, with y,, ¥, €
I';(w), can be completed to a path yy,y,v,8. Since | I'(y,) N ['y(w)| = 2, the same path yy, v,
can certainly not be completed to a path y,y,87; therefore, one cannot have v, € I';(8%).
Consequently, I'i(y) N I'3(87) © I'y(w), which finishes the proof of step 5.

STeP 6. Suppose the labelled graph I'y(w) is given. Then:
(a) if yy, is an edge of I, with ye I'(w) and vy, € ,, the third point v * v, of the line it
spans is uniquely determined by v, the index i and the label of vy, ;
(b) if { and {' are two points of Q; at mutual distance 2 inside (2, the (unique) edge of
I'y(w) collinear with {' is uniquely determined by the edge collinear with {, the index i and
the label of {'.

(a) Clearly, y * v, is the unique point of I';(w) connected with y and whose label
coincides with that of y except in the ith place.

(b) Let {y,{' be a path inside 2, Assume without loss of generality, that i =5 and that
the labels of ¢, y, and ¢’ are 0111, 0000 and 1011, respectively. Let ¢ be the point of
I'y(w) labelled 01111 and connected with ¢ (by hypothesis, that point is known). Denote
by ¢ the point of I',(w) labelled 10111 and connected with ¢’. Now, if § (resp. 8,) is the
(uniquely determined) point of I'y(w) labelled 11111 and connected with £ (resp. with
£, it follows from step 5 that we cannot have §, = 87: just take for y the point of I'y(w)
labelled 00000 and connected with y,. Thus 8 =4§,, and ¢ is the unique point of I,(w)
with label 10111 and such that £5¢ is a path. Our assertion follows, in view of (a).

Step 7. The graph I's(w)u Fy(w)=(J 02;)u T'y(w) is unique up to label-preserving
isomorphism and possibly a transposition of the two first types (or any preassigned odd
permutation of the types).

The labelled graphs I',(w) and 2; are unique by steps 2 and 3. Let v, 6 € I',(w) have
labels 00000, 11111, respectively, and satisfy the condition of step 5. Up to label-preserving
isomorphism, there are two distinct choices for the pair (v, §), but in view of Lemma 2(d)
one can pass from one to the other by an automorphism of the graph I'y(w) inducing
any preassigned odd permutation of the types. Now, supposing y and & given, we shall
show—and that will prove our contention—~that the graph I',(w) U £; is unique up to the
label preserving automorphism of (2; [extended by the identity on I',(w)]. We assume,
without loss of generality, that i =35. Let y; be the point of I',(w) labelled 01111 and
connected with 8. By the assumption made on v, §, there exists an edge vy, y, of {25 whose
vertices carry the labels 0000 and 0111 and are connected with y and v;, respectively.
Applying step 6 repeatedly, one sees that this edge uniquely determines the graph structure
of I'y(w) U 2s. Now, our assertion follows from the fact that the two edges of 25 with
the given labels are permuted by a label-preserving automorphism of (2.
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STEP8. Theincidence system Y=,(w) defined as in Section 3 can be uniquely reconstructed
from the graph I'~;(w) and its partition into I's(w) and Iy(o).

To prove this, we need only determine which 4-tuples of edges in I's(w) span lines
meeting in the same point of (o). oA

Let {7, 8} be an edge of I';(w). Then v, & € & for some k (1< k<35),say k = 5. Assume,
without loss of generality, that the label of y is 0000 and that the label 01f 6 is 1110. There
are lines {7y, v', y*} and {8, &', 67} with 7', ¥, 8', 8°€ I',(w) such that y" has label 00000,
y* has label 00001, 8' has label 11100, and 5% has label 11101. Let i =1, 2 There are f(':)ur
3-paths from y' to &°, one of them is y'y88' and the others are three distinct paths inside
T'yw). .

4Upon permuting, if necessary, the two first places of the labelling, we may assume that
the labels of the points of the 3-paths joining y' and 8' inside I'y(w) are

00100 10100
00000 | 10000 11000 11100. (L)
01000 01100

We denote the corresponding paths by y'y;8;8', where j=1,2,3 is the number of the
row in (L). Now the labels of the 3-paths joining y*> and &7 inside I';(w) cannot be
anything but
01001 11001
00001 00101 01101 11101,
10001 10101

and again, we denote the corresponding paths by y’y;878. Observe that y| * 8} and
y; * 8; belong to {2; and that their labels in ; differ in exactly three places.

By the regulus condition, there exists a point £ (i=1,2) connected with y * & and
y; * 8; for all j. That point cannot belong to I'y(w) (because it is connected to v * 8) nor
to I'3(w) (because no point of I';(w) can be connected simultaneously to points of 7,
2, and (2;). Therefore, ¢ belongs to I'y(w). Being connected with vy * 8, the point &'
coincides with (y * 8)”. Thus, (y * ) is connected with y! * &} for i =1, 2. In particular,
¥; * 8; and ] * 8] have distance at most 2 to each other. As their labels in £2; differ in
exactly three places, they are adjacent (for otherwise, they would have distance 3 in £
and distance at most 2 in I, a contradiction with the non-existence of circuits of length
4 or 5). Consequently, (y * 8)7 = (y;* 8]) * (v * 87), and y * 6 = (y} * 8]) * (2 * 52)°.
Assertion (8) follows.

Theorem 3 is a direct consequence of steps 7 and 8 and Lemma 1.

REMARK. The Hall-Janko group arises as the group of automorphisms generated by
the 315 involutions o for w ranging over the points of I
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